

PC4008

A Constant Output Current LED Driver

5 ~ 40V Supply Voltage, adjustable output current up to 80mA A Constant LED Current regardless of supply Voltage Variation

PC4008

LED Driver Provides Constant LED Current Independent of Supply Voltage

1. General Description

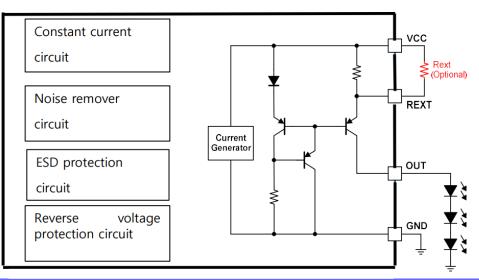
The PC4008 cost efficient LED driver to drive low power LED's.

The advantages toward resistor solution are :

- Homogenous light output despite varying forward voltage in different LED strips
- Homogenous light output of LEDs despite voltage drop across long supply line
- Homogenous light output independent from supply voltage variations
- Longer lifetime of the LED's due to reduced output current at higher temperature

The advantages towards discrete solutions are :

Lower assembly cost and smaller from factor

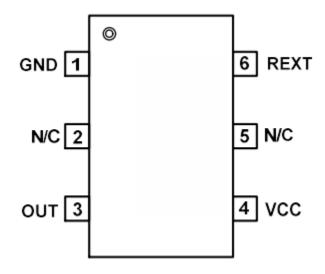

Features

- LED Drive Current of 48mA (Rext = open)
- Output Current adjustable up to 80mA with external resistor
- Low voltage current generator for error cancel
- Supply voltage up to 40V
- · Easy paralleling of drives to increase current
- Low voltage overhead of 0.8V
- High current accuracy at higher temperature -Negative thermal coefficient of -0.13%/K

Application

- Channel letters for advertising, LED strips for decorative lighting
- LED strips for interior decorative of automotive
- Retrofits for general lighting, white goods like refrigerator lighting
- Medical lighting and power supply any resistive or LED
- Protection of reverse voltage between ground and Power Supply
- ESD protection
- AEC-Q100 Qualification
- MSL LV1

2. Typical Application Circuit


Rev. 1.0, 2023-02-17

www.powercubesemi.com

3. Pin Information

Pin Placement

Pin Description

NO	NAME	Description			
1	GND	Ground Pin			
2	N/C	lore than N/C processing, It is recommended as a GND processing			
3	OUT	Pin is connecting to OUT of LED			
4	VCC	Power Supply Pin			
5	N/C	No Connection			
6	REXT	Pin is connecting to external Resistor for adjust to Output Current			

4. Absolute Maximum Ratings⁽¹⁾

Symbol	Description	Ratings	Unit
V _{cc}	Supply Voltage	40	V
V _R	Reverse Voltage between pin V_{CC} and GND	40	V
T,	Operating Junction Temperature	150	°C
T _A	Operating Ambient Temperature Range	-40 to 105	°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
θ _{JA}	Package Thermal Resistance (SOT-26)	500	°C/W
P _D	Power dissipation (SOT-26)	250	mW

Note :

Recommended to use within the specified P_{D} range.

5. RSD Ratings

Symbol	Description	Value	Unit	Class
HBM ₁₎	Supply Voltage	2,000	V	2
CDM ₂₎	Charged Device Model	750	V	C5

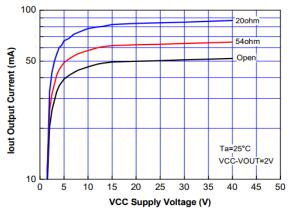
Note :

1) Reference Document : AEC-Q100-002-REV-E : 2013

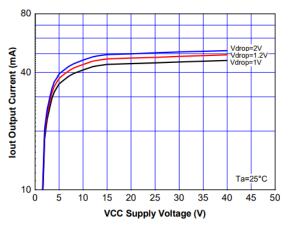
2) Reference Document : AEC-Q100-011-REV-C1 : 2013

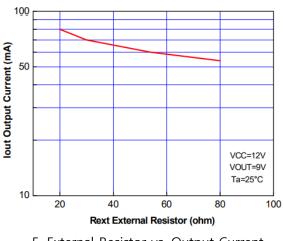
6-1. Electrical Specification

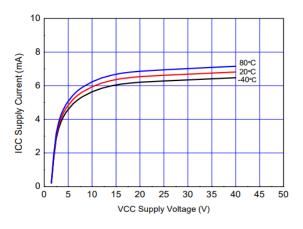
 V_{CC} =12V, T_A =+25°C, unless otherwise specified

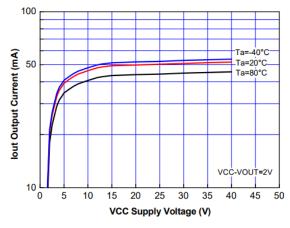

Description	Symbol	Symbol Condition		Тур	Max	Unit
Breakdown Voltage	V _{BR(CEO)}	V _{BR(CEO)} No Load		-	-	V
Start-up Current	I _{ST}	V _{CC} =3V, No Load	15	21	27	mA
Supply Current	I _{cc}	V _{CC} =12V, V _{OUT} =9V	3	6	8	mA
Output Current	Ι _{ουτ}	V _{CC} =12V, V _{OUT} =9V	43	48	53	mA
Output Current	Ι _{ουτ}	V_{CC} =12V, V_{OUT} =9V, Rext=20 Ω	-	80	-	mA
Internal Resistor	R _{INT}	-	15.6	19.6	23.6	Ω
Rext Voltage Drop	V _{DROP}	V _{CC} =12V	0.84	0.94	1.04	V

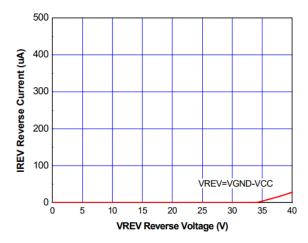
DC Characteristics with stabilized LED load


Description	Symbol	Condition	Min	Тур	Мах	Unit
Output Current on Pin OUT change vs. Ta	∆l _{out} /l _{out} -Ta	V _{CC} =12V, V _{OUT} =9V, Ta=-20 to 100°C	-	-0.13	-	%/K
Output Current on Pin OUT change vs. V _{CC}	ΔΙ _{ουτ} /Ι _{ουτ} - V _{cc} /V _{ουτ}	VCC=12~16V, VOUT=9V	_	1.6	_	%/V


6-2. Typical Electrical Characteristics

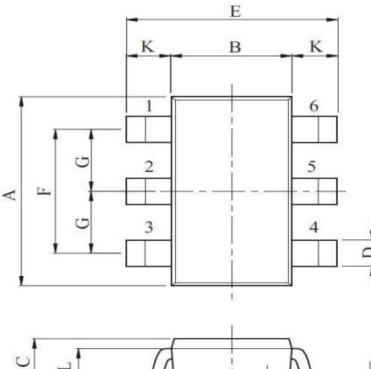

1. Supply Voltage vs. Output Current

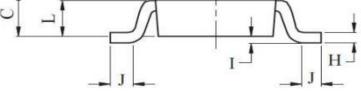

3. Supply Voltage vs. Output Current


5. External Resistor vs. Output Current

2. Supply Voltage vs. Supply Current

4. Supply Voltage vs. Output Current




6. Reverse Voltage vs. Reverse Current

www.powercubesemi.com

Package Outline

		-	mt . mm		
SYMBOL	DIMENSIONS				
STIVIDOL	MIN	NOM	MAX		
А	2.8	2.9	3.0		
В	1.5	1.6	1.7		
с	1.05	1.10	1.15		
D	0.3	0.4	0.5		
E	2.6	2.8	3.0		
F	1.8	1.9	2.0		
G	-	0.95	-		
н	0.11	0.16	0.21		
I	0.0	-	0.1		
J	0.15	0.25	0.35		
к	-	0.6	-		

Unit : mm

Rev. 1.0, 2023-02-17